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Enhancing Capacity and (Dis)Charge 
Effect of Thermally 
Conductive Fillers

Effect of Decreasing 
Length Scale

• Ragone plots provide tradeoffs in energy density & power 
density for TES or electrochemical systems 

• Design for system power outputs for given applications

• Thermal conductivity enhancements
• Material compatibility issues and lost capacity 
• Better for high PD needs (emergency cooling systems)

• Decreased conduction lengths 
• Stronger effect at low PD needs (residential heating/ cooling) 
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High-Capacity TES Materials TPU (T):  Thermoplastic Polyurethane
PCL (P) :  Polycaprolactone 
MEPCM (M): Microencapsulated PCM 

Material Avg Size
μm

Tm
°C

∆H
 J/g

PCL powder 200–400 50 75.5 
TPU powder 20–80 107 n/a
6D MEPCM 20 6 183 

Pros
High MEPCM Loading

Smooth filament surface
  

Cons
Ripped by  gears

Erratic filament thickness

Pros
High MEPCM Loading

Reliable printing
  

Cons
Rough filament surface 

Extremely brittle
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Maximum Packing and Optimized Extrusion 
Constituent Materials
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High-Resolution, Geometric Freedom

100% solid wall 

15% 
gyroid 

100% 
infill

compression 
molded 15% gyroid 30% gyroid 

Large Honeycomb Structure
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Retaining and Maintaining Thermal Properties
• Limitations in MEPCM incorporation are shear failure of shells

• TPU and PCL both have high melt flow indices
• Effectively a lower melt state viscosity 

• Screw extrusion compounding is aggressive 

No Loss in TES with Processing No Loss in TES with Cycling

Poorly 
Mixed

Well 
Mixed
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Mechanical Response & Directional Dependence 
• Fantastic layer adhesion

• Comparable x- and z-direction data in some cases
• Elongation compared to molded samples

• Reliable printing made for reliable mechanics
• No outliers among n = 5 samples

• Balanced properties with blended polymers

Strength Stiffness Stretch 

X-direction Z-direction
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AM-TES Materials Future Directions
• AM-PCM HXC testing in air and water for HVAC and water heating 
• Triply periodic minimal surface double walled structures

• Creating structures with resin printing, but goals to move to laser weld printing

Double-wall Resin 3D Printing Wire-Laser Metal 3D Printing 
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Thank you! 

Questions? 
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AM-TES Materials Outcomes
Publications 
• TB Freeman*, KEO Foster*, CJ Troxler, CW Irvin, A Aday, SKS Boetcher, A Mahvi, MK Smith, A Odukomaiya, 

“Advanced Materials and Additive Manufacturing for Phase Change Thermal Energy Storage and Management: 
A Review,” Adv. Energy Mater, 2204208, 2023. DOI: 10.1002/aenm.202204208

• KEO Foster, T Freeman, I Lizier-Zmudzinski, S Dudt, K Morgan, SKS Boetcher, A Odukomaiya, “Additive 
Manufacturing of Thermal Energy Storage Composites with Microencapsulated Phase Change Materials 
Supported in a Multi-Polymer Matrix” Submitted.

• T Freeman, KEO Foster, A Odukomaiya, SKS Boetcher, K Morgan “Fused Filament Fabrication of Thermoplastic 
Polyurethane Composite with Microencapsulated Phase-Change Material” In preparation.

Patents and ROIs
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Microencapsulated Phase Change Material Composite for Additive Manufacturing, ROI-23-75, Provisional 
Application No. 63/507,171, 2023
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Fabrication, ROI-22-74
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